

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International GCSE in Physics (4PHO) Paper 2PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4PH0_2PR_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	2 value line with top line & lower line at constant heights; straight up/down lines;	ignore spacing of pulses judge by eye	2
	e.g. typical 'top hat' waveform Digital	allow waveform with 3 distinct values at +X, zero and – X	
(b)	any two described advantages from:-	accept	2
	MP1. information density e.g. digital carry more information (per second);MP2. quality e.g. maintain quality over longer distances;	clearer	
	MP3. easier to reduce noise/less affected by noise;		
	MP4. regeneration e.g. able to boost signal to original strength;	easier to process	
		total marks = 4	

Question number	Answ	er	Notes	Marks
2 (a)	А			1
(b) (i)	suitable scales; 6 points plotted;;		 Must use > half width and half height of grid to nearest ½ square, up to two marks available for this, -1 each error reject dot to dot allow a reasonably smooth 	4
	curve of best fit;		curve, points should be evenly distributed about the line	
	3-10	15 20	25 30 32	
	Voltage across X in V	Current in X in A		
	0	0		
	3.0	0.5 2.3		
	19.5	2.3		
	25.0	3.2		
	29.5	3.3		

(ii)	V= I x R	in words, or accepted symbols or rearranged	1
(iii)	value of I from graph; rearranged equation/sub into equation; evaluation; unit;	allow ECF from graph answers without working can gain full marks	4
	e.g. $I = 1.6 (\pm 1/2 \text{ a small square})$ $10 = 1.6 \times R \text{ OR } R = 10/1.6$ R = 6.3 $\Omega \text{ / ohms}$	R= 6.25 allow answers which round to a number in the range 5.8 to 6.3	
(iv)	any three descriptions from: - MP1. as V increases I increases (at first);	allow as I increases V increases	3
	MP2. constant gradient/constant R (at first);	graph line linear (at first)	
	MP3. I is proportional to V;		
	MP4. gradient changes at high voltage/eq;	nonlinear above ~ 15 V graph is less steep at high voltage	
	MP5. ΔI smaller (than previously) for V > 15V;	R increases for V > 15V (to $\sim 8\Omega$)	
		ignore slows down positive correlation	

(v)	any two conclusions from: - MP1. resistance is constant at first;	allow V and I are proportional at first, it obeys Ohms law at first	2
	MP2. resistance is not constant / resistance increases as V (or I) increases;	non-ohmic /does not obey Ohms law / V and I are not proportional	
	MP3. because X gets hot(ter);	increasing temperature	
	MP4. X is a filament lamp;		
		total marks = 15	

number 3 (a) (i)	any two from: -		
3 (a) (i)			_
	MP1. travels at speed of 3 x 10 ⁸ m/s;	travel at the same speed /speed of	2
	MP2. travels in a vacuum;	light	
	MP3. transverse wave;		
	MP4. transfer energy / information;		
	MP5. can be reflected/refracted/diffracted;		
(ii)	B gamma rays;		1
(b) (i)	step- up;		1
(ii)	$\frac{\text{input (primary) voltage}}{\text{output (secondary) voltage}} = \frac{\text{primary turns}}{\text{secondary turns}}$ $\frac{V_p}{V_S} = \frac{n_p}{n_S}$	allow equation in any rearrangement	1
(iii)	substitution; rearrangement; evaluation; e.g. $\frac{230}{2000} = \frac{110}{n_s}$	sub and rearrangement in either order	3
	$n_s = \frac{110 \times 2000}{230}$		
	$n_s = 960$	956.52, 957	
(iv)	to protect user from high voltage/eq;	allow plastic is an insulator to prevent (electric) shock Total 9 marks	1

	uesti umb		Answer	Notes	Marks
4	(a)	(i)	uranium/plutonium;	allow chemical symbols	1
		(ii)	(particles) formed after fission/ after U breaks up;	do not allow after decay	2
			plus any one from: - neutron; daughter nuclei; named products;	allow gamma (radiation)	
		(iii)	MP1 they are (still) radioactive/ emit ionising radiation /eq;	allow harmful to people/environment	2
			MP2 they last for a very long time/have a long half-life/eq;		
		(iv)	it slows down neutrons/eq;	ignore absorbs neutrons	1
		(v)	any two ideas from: - MP1 fewer neutrons would be absorbed;	more neutrons available	2
			MP2 fission rate would increase / /(reactor) become critical;	the reaction would go out of control do not accept "turns	
			MP3 too much energy produced (too fast);	into a bomb"	
			MP4 meltdown of core/reactor;	meltdown of 'it'	

(b)	(i)	773(K);		1
	(ii)	substitution; rearrangement; evaluation; e.g. $\frac{8.4}{773} = \frac{P_2}{1170}$ $P_2 = \frac{8.4 \times 1170}{773}$	no mark for the equation rearrangement and substitution in either order	3
		13 (MPa)	12.7 allow ecf from (b)(i) for all 3 marks	
			if calculation seen with °C for T₁ instead of K, then max mark = 2	
			answer of 19.7 (MPa) with no working = 1 mark total marks = 12	

Q	uesti	ion	_		
	umb	_	Answer	Notes	Marks
5	(a)	(i)	p = m x v	accept answer in words, standard symbols or rearranged	1
		(ii)	statement of conservation of momentum; calculation of momentum before seen; use of correct mass for momentum after; evaluation of velocity;		4
			e.g. $m_1v_1 = m_2v_2$ $43.2 \times 4.10 \text{ OR } 177(.12) \text{ seen}$ $(m_2=) 45.7$	allow in words	
			(v=) 3.88 (m/s)	3.9, 3.876	
	(b)		MP1. boy and skateboard move backwards/in opposite direction to the ball;		2
			Either MP2. because of conservation of momentum/eq; MP3. because of Newton's 3 rd law/eq;		
				total marks = 7	

Question	Anorman	Notes	Mortes
number	Answer	Notes	Marks
6	five suitable comments: O/P = output power Wind • wind O/P is (far) too low (to meet demand)/the lowest; • (can't rely on) wind O/P is weather dependent; Gas	ignore comments about renewable non-renewable green-house effect climate change pollution	5
	 gas O/P (too) low /need many gas power stations (to meet demand); gas (turbine) is the fastest to start up; 		
	Tidaltidal gives the highest O/P;tidal only occurs at fixed times (so is not useful);		
	Nuclearnuclear O/P is (relatively) high;nuclear takes too long to start up;	can't be used for	
	Coalcoal O/P is second highest;coal second fastest to start up;	sudden need/RA	
	 Evaluation statement(s) none of them is enough to meet the power demand; nuclear/wind/tidal would be unsuitable; OR coal or gas could be suitable; OR a mixture of stations would be suitable; 		
	Costs allow 1 mark for relevant statement	e.g. coal is most expensive fuel gas is second most expensive fuel	
		total marks =5	

	uesti		Answer	Notes	Marks
7	(a)		lever arm / bolt moves to the left;		1
		(ii)	to return the metal bar (and lever) to the right/eq	allow pulls it back (again)	1
	(b)	(i)	$F_1d_1 = F_2d_2;$	accept answer in words, standard symbols or rearranged clockwise (moments) = anticlockwise (moments	1
		(ii)	substitution; rearrangement; evaluation; e.g. 110 x 22 = 38 x F ₂ F ₂ = 110 x 22 38 63.7 (N)	rearrangement and substitution in either order	3
				63.684 (N) -1 for incorrect rounding	
		(iii)	any two from MP1 (since distance to A greater) moment is greater; MP2 distance to B is constant / still 110 cm; MP3 (hence) force will increase;	allow correct re- calculation with d _B	2
				total marks = 8	

www.xtrapapers.com

